پیش بینی جریان آبراهه ای با استفاده از مدل های هیبریدی هوشمند در مقیاس ماهانه (مطالعه موردی: رودخانه زرین رود)

Authors

  • بابک محمدی کارشناسی ارشد مهندسی منابع آب، گروه مهندسی آب ، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران* (مسوول مکاتبات)
  • روزبه موذن زاده استادیار گروه آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران
Abstract:

زمینه و هدف: انتخاب ورودی‌های مناسب برای مدل‌های هوشمند از اهمیت بسزایی برخوردار است زیرا باعث کاهش هزینه و صرفه‌جویی در وقت و افزایش دقت و کارایی مدل‌ها می‌شود. هدف از پژوهش حاضر،کاربرد آنتروپی شانون برای انتخاب ترکیب بهینه متغیرهای ورودی در شبیه سازی دبی ماهانه توسط پارامترهای هواشناسی می‌باشد. روش بررسی: در این مطالعه داده های هواشناسی و سری زمانی ماهانه دبی رودخانه زرین رود (ایستگاه صفاخانه) واقع در آذربایجان- شرقی در دوره زمانی  1336تا1394 مورد استفاده قرارگرفت. پارامترهای هواشناسی و ماه از سال به‌عنوان ورودی در روش آنتروپی به منظور تعیین ترکیب موثر در نظر گرفته شد. یافته ها: نتایج آنتروپی شانون نشان داد که پارامترهای بارش ، ماه از سال و دما ، نتایج بهتری را برای مدل‌سازی ارایه می‌دهد. شبیه‌سازی با استفاده از مدل های هیبرید هوشمند الگوریتم هیبریدی ازدحام ذرات و الگوریتم هیبریدی شبیه سازی تبرید انجام گرفت.کارایی مدل‌ها با استفاده از معیار ضریب تبیین ،ریشه جذر میانگین خطا  وشاخص پراکندگی محاسبه گردید. بحث و نتیجه گیری: نتایج نشان داد از میان این مدل ها با ساختار ورودی‌های یکسان، مدل الگوریتم هیبریدی شبیه سازی تبرید بر پایه ماشین بردار پشتیبان عملکرد بهتری برای شبیه‌سازی دبی جریان در مقایسه با سایر مدل های هیبریدی هوشمند داشته است. همچنین نتایج تحقیق نشان داد که روش آنتروپی در انتخاب بهترین ترکیب ورودی در مدل‌های هوشمند از کارایی خوبی برخوردار است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی سناریوهای احتمالاتی ماهانه جریان رودخانه با رویکرد ESP (مطالعه موردی: رودخانه هلیل رود)

پیش­بینی جریان ورودی به مخزن سد، ابزاری اساسی در مدیریت بهینه منابع آب محسوب می­شود. ضرورت ارتقاء دقت و بازه زمانی پیش­بینی جریان، برای بخش کشاورزی که بزرگ­ترین مصرف­کننده آب محسوب می­شود، بارزتر می­باشد. در این راستا استفاده از رویکردهای احتمالاتی برای پیش­بینی­های بلند­مدت جریان و احتساب عدم قطعیت پیش­بینی، توصیه شده است. هدف تحقیق حاضر ارائه مدلی برای پیش­بینی احتمالاتی جریان ورودی به مخزن س...

full text

پیش بینی جریان ماهانه رودخانه با استفاده از ترکیب مدل های خطی سری زمانی و شبکه های بیزین (مطالعه موردی: رودخانه بختیاری)

یکی از مسائل مهم در مدیریت منابع آب، تهیه و توسعه مدل‌های مناسب به منظور پیش‌بینی دقیق‌تر فرآیند جریان رودخانه‌ها می‌-باشد. بدین منظور در مطالعه حاضر برای پیش‌بینی جریان ماهانه رودخانه بختیاری، در دوره آماری 1395-1334، از مدل‌های سری-زمانی خطی (ARMA)، مدل هوشمند شبکه بیزین (BN) و مدل تلفیقی BN-ARMA استفاده شد. عملکرد مدل‌های توسعه یافته براساس شاخص‌های آماری جذر میانگین مربعات خطا (RMSE)، ضریب ...

full text

پیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی

پیش‌بینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیش‌بینی آن امری دشوار می‌باشد. از طرفی سری‌های زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدل‌های هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...

full text

پیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی

یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدل‌سازی سیستم‌هایی که دارای پیجیدگی زیاد یا عدم‌  صراحت بوده و یا داده‌های کافی از آنها موجود نیست، استفاده از تئوری مجموعه‌های فازی از جمله سیستم می‌باشد. مزیت اصلی این تکنیک نسبت به  استنتاج فازی روش‌های رایج، این است که این سیستم بر اساس قواعد اگر- آن‌گاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...

full text

ارزیابی تأثیر نرمال سازی توزیع احتمالاتی رواناب ماهانه بر عملکرد مدل های SVM و ANN در شبیه سازی جریان ماهانه رودخانه ها (مطالعه موردی: حوزه زرینه رود)

     Accurate estimation of river flows is one of the fundamental activities in water resources management of river basins. Artificial neural network (ANN) and support vector machine (SVM) are the most important data mining models that can be considered for this purpose. Due to the data-based attribute of these models, probability distribution of data may have a considerable effects on their pe...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 9

pages  71- 81

publication date 2019-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023